STEP ONE

Be informed.  Read information below.

STEP TWO

Schedule consultation with R. Douglas Wichman, MD.

STEP THREE

Submit "New Patient Form", current labwork, & imaging results prior to consultation.

STEP FOUR

Establish if you are a candidate for this therapy

in accordance with the Georgia

"Access to Medical Treatment Act".

 

 

An external file that holds a picture, illustration, etc.
Object name is nihms-207228-f0001.jpg

 

----------------------------------------------------------------------------------------------------------------------------------------------------------

*** SPECIAL NOTE FROM DR. WICHMAN ***

The following excellent article was reproduced from EBioMedicine at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721876/:

 

EBioMedicine. 2015 Aug; 2(8): 778–779.
Published online 2015 Aug 14. doi:  10.1016/j.ebiom.2015.08.023
PMCID: PMC4721876

A Fatty Acid Synthase Inhibitor Shows New Anticancer Mechanisms

 

The pharmacological modulation of proteins and molecules related to cancer is an important goal for translational science. Fatty acid synthase (FASN) is a complex dimeric protein that converts acetyl-CoA and malonyl-CoA into palmitic acid in a NADPH-dependent reaction in mammalian cells (Maier et al., 2006). Many cancers present a strong FASN expression and high enzymatic activity, and in recent years FASN has emerged as a relevant anticancer target. So far, several compounds have been reported to inhibit the enzymatic activity of FASN and to have an effect on the growth of malignant cells. Some of these compounds exhibit pharmacological limitations or induce weight loss, preventing their development as systemic drugs. In this issue of EBioMedicine, Ventura et al. report the characterization of the anti-tumor activity of TVB-3166, a potent and orally available FASN inhibitor that may provide a novel approach for cancer therapy (Ventura et al., 2015). The authors observed that FASN inhibition with TVB-3166 was able to induce apoptosis, to inhibit anchorage-independent cell growth under lipid-rich conditions, and to inhibit in vivo xenograft tumor growth in a dose-dependent manner without affecting non-cancer cells.

FASN plays a critical role in a number of metabolic functions by catalyzing the terminal steps in the synthesis of long-chain saturated fatty acids. There is a strong FASN expression and high enzymatic activity in many cancers especially in carcinomas (Sebastiani et al., 2006), while FASN is expressed at low levels in most normal tissues, except the liver, adipose tissue, and lactating mammary gland (Sul and Wang, 1998), suggesting that cancer cells are more dependent on de novo palmitate synthesis catalyzed by FASN than normal cells (Menendez and Lupu, 2007). Palmitate and palmitate-derived lipids are essential components in cancer cell proliferation and survival as they provide energy metabolism and storage, membrane biosynthesis, and architecture and protein localization and activity. The well-documented upregulation of FASN in many human cancers as well as its association with poor clinical outcome (Witkiewicz et al., 2008) both strengthen the hypothesis that FASN is involved in the development, maintenance, and enhancement of the malignant phenotype. Interestingly, increased FASN expression has also been observed in some pre-neoplastic lesions and increases with tumor progression, supporting the hypothesis that the early up-regulation of FASN in precursor lesions might represent an obligatory metabolic acquisition that provides growth and survival advantages through multiple mechanisms.

In the report by Ventura et al., the evidence for a role of FASN as a therapeutic target comes from both in vitro and in vivo models of human cancers. The authors found that pharmacological inhibition of FASN using TVB-3166 causes an increase in apoptosis in breast and prostate cancer cell lines. Interestingly, this response is not observed in non-cancer cells. These findings are consistent with previous reports that also used other FASN inhibitors (Brusselmans et al., 2003Puig et al., 2009). The authors describe here unreported mechanisms of action including alteration on lipid raft architecture, palmitoylated protein localization disruption and inhibition of signal transduction through the PI3K-AKT-mTOR and ß-catenin pathways. The effect of TVB-3166 on lipid raft architecture was examined using immuno-fluorescent confocal microscopy to check palmitoylated protein localization. The data reveal that FASN inhibition disrupts lipid raft distribution in the membranes, altering the localization of raft-associated proteins such as N-Ras, inhibits multiple signal transduction pathways including PI3K-AKT-mTPOR and B-catenin, and modulating the expression of several genes in metabolic, proliferation and apoptosis pathways.

In addition to in vitro experiments, Ventura et al. also present important results using in vivo models. The authors show that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. These results are globally in agreement with previous publication in which treatments with siRNA or chemical inhibitors of FASN have been shown to decrease tumor size in animal models of various types of cancers (De Schrijver et al., 2003Puig et al., 2011). Finally, the authors performed both genetic and expression analyses and found that FASN inhibition modulates genes involved in lipid synthesis, signal transduction, cell cycle and apoptosis pathways. It may be very relevant for future development that those pathways were not affected in non-cancer cells.

In conclusion, the results from this report show the potency, selectivity, reversible mechanism of action and in vivo availability of the FASN inhibitor TVB-3166, differentiating it from earlier FASN inhibitors such as C75 or cerulenin. The authors found that TVB-3166 modulates lipid synthesis, signal transduction, cell cycle and apoptosis pathways in both in vitro cell culture and in vivo tumor xenograft models. These results represent an important step in discovering the multiple mechanisms of action of FASN and pave the way for the identification of biomarkers with potential utility as predictive factors.


Articles from EBioMedicine are provided here courtesy of Elsevier

 

STEP ONE

Be informed.  Read information below.

STEP TWO

Schedule consultation with R. Douglas Wichman, MD.

STEP THREE

Submit "New Patient Form", current labwork, & imaging results prior to consultation.

STEP FOUR

Establish if you are a candidate for this therapy

in accordance with the Georgia

"Access to Medical Treatment Act".

 

 

Image result for antineoplastons

 

This page is under construction. If you would like to know more about this topic, please call 770-232-7883 or contact us by This email address is being protected from spambots. You need JavaScript enabled to view it..

 

STEP ONE

Be informed.  Read information below.

STEP TWO

Schedule consultation with R. Douglas Wichman, MD.

STEP THREE

Submit "New Patient Form", current labwork, & imaging results prior to consultation.

STEP FOUR

Establish if you are a candidate for this therapy

in accordance with the Georgia

"Access to Medical Treatment Act".

 

----------------------------------------------------------------------------------------------------------------------------------------------------------

*** SPECIAL NOTE FROM DR. WICHMAN ***

The following excellent article is reproduced from Current Medicinal Chemistry at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102832/:

 

Curr Med Chem. Author manuscript; available in PMC 2014 Jul 18.
 
Published in final edited form as:
PMCID: PMC4102832
NIHMSID: NIHMS606946

Salinomycin: A Novel Anti-Cancer Agent with Known Anti-Coccidial Activities

 

INTRODUCTION

In a screen of 16,000 chemicals for efficacy to selectively eradicate cancer stem cells (CSC), Gupta et al. (2009) identified salinomycin as a novel anti-cancer agent on the basis that it possesses more than 100-fold higher in potency than paclitaxel, a commonly used anti-breast cancer drug [1]. Additional studies that follow this lead provide compelling evidence that salinomycin has effects on CSCs from other cancer cell types as well as activities in overcoming chemoresistance in cancer cells. These findings offer salinomycin as a promising anti-cancer drug for chemoprevention and therapy [23].

Salinomycin (molecular formula, C42H70O11) is a monocarboxylic polyether antibiotic isolated from Streptomyces albus strain (Strain No. 80614) (Fig. 1). The usage of salinomycin in veterinary medicine can be traced back to 1980s [4] as a broad spectrum antimicrobial agent with activity against gram-positive bacteria, fungi, and parasites [46]. Today, salinomycin is one of the most widely used coccidiostats in poultry in the United States [610].

Fig. (1)
Structure of salinomycin

As an antimicrobial drug, salinomycin primarily functions as an ionophore that facilitate the transport of cations (K+, Na+, Ca2+ or Mg2+) through cell membranes of the target organisms including protozoa and gram-positive bacteria. Most notably, such facilitated transport increases intracellular calcium to levels toxic to coccidians, by inducing the selective disposition of osmoregulatory organelles in the cell thereby disrupting the osmotic balance and resulting in eventual demise of the responsive organisms [1112]. However, whether such ionophoric properties and mechanisms are applicable or suffice for explaining the observed specificity of salinomycin on CSCs and multidrug resistant cancer cells remains unclear. Indeed, several studies have shown that salinomycin activates unconventional pathways of cell death, increases DNA damage, and inhibits Wnt signaling pathway, all of which purportedly have been linked to anti-cancer activities of salinomycin in various types of cancers [231316]. In this review, the status and recent progress on the use of salinomycin in human cancer will be summarized and discussed.

THE DISCOVERY OF SALINOMYCIN AS A CSC ERADICATOR

Accumulating evidence shows that the presence of CSC could be the major cause of cancer recurrence after therapy. This is largely attributed to CSCs’ self-renewal and tumor initiating capability which can repopulate the tumor mass and consequently confer resistance to therapy [1720]. Clinically, CSCs also present significant challenge owing to their unique endowment with an enhanced DNA repair system, up-regulation of drug efflux pumps and robust expression of anti-apoptotic proteins [2124]. Therefore, it is envisaged that eradication of CSCs is a key to the prevention or suppression of cancer relapse and chemo-resistance, the major obstacles in current cancer therapy. Although the epithelialmesenchymal transition (EMT) has long been recognized as a key feature of cancer invasion and metastasis [2527], Mani et al. (2008) recently showed that the induction of EMT in both human mammary epithelial cells (HMLEs) and mammary carcinomas occurred in parallel with the enrichment of cells with epithelial stem cell properties [28]. Gupta et al. observed that EMT transformation of HMLER breast cancer cells (human mammary epithelial cells overexpressing hTERT, SV40 T/t and H-RasV12) is accompanied by the appearance of tumorigenic and chemo-resistant CSC like cells (HMLERshEcad). Using this feature as an in vitro high-throughput strategy and model system, Gupta et al. (2009) screened over 16,000 compounds and identified that salinomycin was the only one chemical showing both selectivity and biopotency in depleting breast CSCs. Indeed, the pharmacological efficacy of salinomycin is more than 100-fold greater than that of paclitaxel, a commonly used anti-breast cancer drug [1], displaying profound inhibitory activity on tumor seeding, growth and metastasis in NOD/SCID mice in vivo [1]. The extraordinary properties and presumed clinical implications of salinomycin evident in this seminal finding laid the foundation for a flurry of studies conducted thereafter examining salinomycin’s anti-cancer effects in various cancer types and model systems. Table 1 summarizes the effects of salinomycin on various types of cancer and CSCs, providing compelling cumulative evidence for its consideration as a promising drug for cancer therapy [23].

Table 1
Investigations of the Anti-Cancer Effects of Salinomycin in Human Cancers

PHARMACOLOGICAL EFFECTS OF SALINOMYCIN ON CANCER

Following the discovery of salinomycin as a CSC killer, the pharmacological effects of salinomycin have been tested in several cell line models in vitro and in vivo. For instance, CD133+ as a marker of CSC in many cancer types was utilized by Dong et al. to demonstrate that CD133+ colorectal CSC like cells were sensitive to salinomycin treatment, but not to conventional anti-cancer drug oxaliplatin, with respect to cell proliferation, colony formation, cell migration, and invasion. The observed effects were accompanied by an upregulation of the epithelial cell marker E-cadherin expression and a suppression of the mesenchymal cell marker vimentin, thereby further implicating the inhibitory effect on the EMT process by salinomycin [29]. Consistent with this finding, Basu et al. observed that the mesenchymal-like subpopulations within squamous cell carcinomas show resistance to conventional cytotoxic therapy but not to salinomycin in vitro and in vivo [30]. KitlowCD44+CD34 cells in gastrointestinal stromal tumors (GIST) are clonogenic cells with the capability of self-renew and differentiation. Bardsley et al. showed that salinomycin blocked the proliferation of KitlowCD44+ CD34 cells and increased their sensitivity to imatinib in mice [31].

Human leukemia stem cell-like KG-1a cells are known to exhibit resistance to chemotherapeutic drugs via the expression of functional ABC transporters such as P-glycoprotein, breast cancer resistance protein (BCRP), and MRP8, which are capable of increasing efflux of drugs. Fuchs et al. observed severe cytotoxic effects of salinomycin on KG-1a cells. Unlike the conventional chemotherapeutic drugs, such as etoposide and doxorubincin, salinomycin is able to overcome ABC transporter-mediated multidrug and apoptosis resistance [32]. Riccioni and colleagues further reported salinomycin as a P-glycoprotein inhibitor by showing its inhibition of the cell growth of P-glycoprotein overexpression multiple drug resistance (MDR) cancer cell lines and the Pglycoprotein mediated drug efflux [33].

Moreover, the selective cytotoxic effect of salinomycin on tumor stem cells was also detected in osteosarcoma in vitro and in vivo. Salinomycin also sensitizes these CSCs to conventional chemotherapeutic drugs including methotrexate, adriamycin, and cisplatin [34]. Very recently, salinomycin shows profound cytotoxicity on high aldehyde dehydrogenase (ALDH) expressing stem like gastric cancer cell lines with activities surpassing 5-fluorouracil (5-FU) and cisplatin (CDDP) [35]. The combinatorial efficacy of trastuzumab and salinomycin in targeting HER2-positive cancer cells and CSCs was supported by enhanced cell death as assayed by formation of mammospheres [36]. Consistent with its promising anti-cancer activity, a few clinical case reports have documented effectiveness of salinomycin in therapy-resistant cancer patients, e.g., a patient with metastatic invasive ductal breast cancer treated with salinomycin showed induction of clinical tumor regression [37]. Together, the aforementioned studies strongly suggest that salinomycin is a new promising agent for cancer therapy.

POSSIBLE MECHANISMS OF SALINOMYCIN ACTION ON CANCER CELL AND CSCS

Recent years, an expanding body of evidence has suggested ion channels and transporters, which exhibit important functions in cancer cell proliferation, apoptosis, invasion, and differentiation, to be an emerging target for cancer therapy [3839]. As mentioned previously, salinomycin belongs to the polyether antibiotic family which functions to facilitate bidirectional ion flux through the lipid barrier of membrane and thus interrupt the innate ion transport systems in both prokaryotic and eukaryotic cells. Being a highly selective potassium ionophore, salinomycin may interfere with potassium channels and promotes the efflux of potassium ions from mitochondria and cytoplasm. [9] However, whether or not salinomycin’s ionophoric activity offers an adequate therapeutic index demands further investigation.

On the other hand, activation of unconventional pathways of cell death, enhanced DNA damage, and inhibition of Wnt signaling pathway, appear to be plausible mechanisms for the multi-dimensional anti-CSC and anti-tumorigenic activities of salinomycin [231316]. Fuchs and colleagues showed that salinomycin induces apoptosis in human cancer cells and overcomes apoptosis resistance through a pathway independent of activation of p53, caspase, CD95/CD95L system, and the proteasome [13]. Kim et al. observed that salinomycin induces massive apoptosis accompanied by caspase-3 activation and cleavage of PARP-1 in human prostate cancer cells and proposed that these effects may be attributed to accumulated ROS and mitochondrial membrane depolarization [40]. Ketola and colleagues showed that increased levels of oxidative stress play important roles in salinomycin induced prostate cancer cell growth inhibition [41]. Although many pathways have been proposed, none of these pathways could fully explain the specificity of salinomycin to CSCs (Fig. 2).

Fig. (2)
Anticancer mechanisms of salinomycin

Kim et al. demonstrated that combined administration of salinomycin with doxorubicin or etoposide led to increased DNA damage and resulted in massive apoptosis in drug resistant cancer cells [14]. Mechanistic studies revealed that by increasing DNA damage through the enhanced expression of p53 and H2AX and reducing the expression of anti-apoptotic p21, salinomycin sensitizes cancer cells to DNA damaging agents, such as doxorubicin and etoposide [14]. In a separate study, salinomycin treatment increased DNA damage and induced G2 arrest, thereby, sensitizing cancer cells to radiation treatment. Similarly, salinomycin could suppress the elevated p21 level resulted from radiation treatment and promote the expression and activation of H2AX and p53 [15]. Very recently, Dhaheri and coworkers observed an increase in histone H3 and H4 hyperacetylation by salinomycin treatment in MDA-MB-231 breast cancer cells [42]. These studies highlighted the roles of DNA damage and histone modifications in salinomycin’s action and suggested that patients may benefit from the combined use of salinomycin with other chemotherapeutic drugs and radiation therapy.

A recent report from Verdoodt and colleagues raised, for the first time, the aspect of autophagic cell death as another mechanism of cell death elicited by salinomycin in colon and breast cancer cells [43]. This conclusion was based on the phenomenon that cell death induced by salinomycin occurred with accompanying features of autophagy, e.g., formation of multiple vacuoles and increased uptake of autophagy markers. Moreover, the induction of ROS and its consequent activation of JNK pathway have also been observed and linked to salinomycin induced autophagic cell death [43]. In addition to the inhibition of cell viability and induction of cell death, Kuo et al. observed that salinomycin induced differentiation of head and neck squamous cell carcinoma (HNSCC) stem cells concomitant with the activation of EMT and the phosphorylation of Akt [44].

Wnt signaling is critical for mammalian development, stem cell renewal, and cancer progression [4546]. Lu et al. have discovered that nanomolar concentrations of salinomycin exhibit profound inhibition on Wnt signaling which is constitutively activated in chronic lymphocytic leukemia cells [16]. This study further showed that salinomycin disrupts the Wnt signaling by impeding the phosphorylation of lipoprotein receptor related protein 6 (LRP6), a Wnt coreceptor, and inducing its degradation [16]. Recently, He and colleagues reported the suppression of the expression of Wnt/β-catenin signaling related proteins, such as β-catenin and p-GSK-3β by salinomycin in pancreatic cancer cells [47]. Nuclear factor-κB (NF-κB) is critical for multiple cellular functions, such as cell proliferation and defense of oxidant induced cellular damage, which are key elements for tumorigenesis and metastasis [4849]. Moreover, NF-κB pathway is activated in prostate stem-like tumor-initiating cells and the suppression of NF-κB results in prostate CSC apoptosis [50]. By using a luciferase reporter assay, Ketola et al. showed that growth inhibition and induction of oxidative stress in prostate cancer cells resulted from treatment by salinomycin was mediated via the suppression of NF-κB pathway activity [41]. More recently, Zhang and colleagues discovered that salinomycin-induced apoptosis in OV2008 ovarian cancer cells was associated with activating p38 MAPK signaling, a critical pathway in cancer development [5152]. However, the exact mechanism of how salinomycin regulates the complex cell signaling in cancer and CSCs remains largely unknown underscoring the requirement for further studies and elucidation.

PHARMACOKINETIC PARAMETERS OF SALINOMYCIN AS AN ANTI-COCCIDIAL CHEMICAL

The pharmacokinetic parameters of salinomycin as an antimicrobial and anticoccidial antibiotic have been extensively studied in many animal species. By virtue of its lipid solubility, it is readily and rapidly absorbed in the gastro-intestinal tract and distribute throughout the serum and tissues. In respect to tissue distribution, fat tissues showed the highest affinity for salinomycin followed by liver and muscle tissues in chicken [53]. Salinomycin is able to penetrate blood brain barrier, though the existence of P-glycoprotein could limit its oral availability and brain penetration [54]. Liver is the primary site for metabolizing salinomycin; rapid hepatic biotransformation of salinomycin yields numerous metabolites [55]. The elimination of salinomycin is moderately fast; 24 hours has been suggested as an adequate withdrawal period for salinomycin in chickens [53]. The oral LD50 values of salinomycin in broiler chickens and laying hens were 108 and 104 mg/kg body weight respectively [56], while the reported LD50 value of salinomycin in horse is only 0.6 µg/kg [5758]. Although the pharmacokinetic parameters of salinomycin as an anticoccidial agent have been established and may provide insights on pharmacokinetic/pharmacodynamic studies of salinomycin in CSCs and human cancer cells, the latter aspects are far from clear and in need of further investigation. It is noteworthy that in a recent reported case, a patient with advanced and metastatic squamous cell carcinoma of the vulva received intravenous administration of 200–250 µg/kg salinomycin every second day in combination with chemotherapeutic drug erlotinib, favorable clinical effects were observed providing a pharmacodynamic window for future studies in humans [37].

CHALLENGES IN USING SALINOMYCIN AS AN ANTI-CANCER AGENT FOR HUMANS

The foregoing presentation and discussion on the significant anti-cancer effects of salinomycin must be considered in the context of its relatively narrow therapeutic index and potential toxicities. It is noteworthy that salinomycin has relatively few side effects in normal cells. Lu et al. showed that salinomycin has negligible effect in inducing apoptosis in peripheral blood mononuclear cells (PBMCs) at concentrations 100-fold higher than that in malignant cells [16]. Scherzed and colleagues also found that only when salinomycin at doses > 30 µM exhibited negative effects on cell viability, migration capability and the ability to form spheroids by human bone marrow-derived mesenchymal stem cells (hBMSC) [59]. However, additional studies using other “normal” cells, especially bone marrow cells, are required before definitive conclusions can be drawn. Recently, Boehmerie and Endres evaluated the cytotoxicity of salinomycin on human neuronal cells and showed that salinomycin treatment led to increased cytosolic Na+ concentration, which consequently resulted in elevated cytosolic Ca2+ and activated calpain, as well as induced the release of cytochrome c from depolarized mitochondria and caspase-dependent apoptosis [60]. These results suggest that it may be prudent to develop efficient strategies, such as tissue specific drug delivery, to prevent the associated neurotoxic side effects of salinomycin. In fact, overdose or accidental ingestion of salinomycin has shown severe toxic effects in cats, dogs, pigs, horses, as well as human [586164]. Moreover, as mentioned, salinomycin is known to interfere with potassium channel implying that, besides cancer cells and CSCs, it could be toxic to normal neural cells and hematopoietic stem cells. Recently, Huczynski and colleagues synthesized a set of amide and benzotriazole ester derivatives of salinomycin and demonstrated their profound anti-bacterial, antimicrobial, and anti-cancer activities [6566]. In consideration of its potential unfavorable cytotoxicity, future studies on the structure-activity relationship (SAR) of salinomycin will be invaluable in aiding the development of less cytotoxic and more selectively potent derivatives for clinical use.

Zhang and colleagues have made the first effort on the development of CSC targeting salinomycin by incorporating it in micelles [67]. Since nanoscale drug delivery system loaded with drug for CSCs has been shown by previous studies to be more efficient to solid tumors than free drug [68], Zhang et al. synthesized salinomycin loaded PEG-b-PCL polymeric micelles (M-SAL) which exhibit distinctly superior efficiency in suppressing breast CSCs in vivo compared with free salinomycin. Moreover, the M-SAL was more potent in eradicating the breast CSC population than cancer cells [67]. In another effort for breast cancer target drug delivery, Aydin and colleagues synthesized a Herceptin (HER)-immobilized salinomycin (SAL)-encapsulated poly(lacticco- glycolic acid) (PLGA) (HER-SAL-PLGA) nanoparticles which were successfully taken up by MCF-7 breast cancer cells [69]. These studies shed light on the development of salinomycin with improved bio-distribution and preferential encapsulation and accumulation in tumors, while concurrently minimizing its toxic effects. Further investigations in the design and development of prominent drug delivery strategies for salinomycin in cancer and CSCs will prove invaluable for salinomycin’s successful clinical deployment in the future.

CONCLUSION AND FUTURE DIRECTIONS

By directly targeting CSCs, salinomycin offers a new paradigm and promising treatment approach by restricting drug resistance and disease relapse. The considerable information that has been garnered on its efficacy suggests that pre-clinical and clinical studies of salinomycin are timely and necessary as the next step to provide direct evidence whether salinomycin can serve as a therapeutic reagent for specific cancer types. In addition, though many signaling pathways and cellular processes have been linked to salinomycin’s anti-cancer activity, the precise mechanism of salinomycin’s action in CSCs and chemo-resistant cancer cells remains unclear and is urgently awaiting future investigations. Development of superior delivery strategies to optimize the bio-distribution of salinomycin is also worthwhile for the potential clinical use of salinomycin.

Finally, identification of salinomycin’s direct targets and indirect targets in cancer or CSC will provide critical information to understand its underlying mechanism. Such knowledge will provide new insight into cancer therapy, a theoretical base for the use of salinomycin as anti-cancer agent and allow for rapid screening for potentially therapeutic compounds with high potency and minimal side effects.

 

STEP ONE

Be informed.  Read information below.

STEP TWO

Schedule consultation with R. Douglas Wichman, MD.

STEP THREE

Submit "New Patient Form", current labwork, & imaging results prior to consultation.

STEP FOUR

Establish if you are a candidate for this therapy

in accordance with the Georgia

"Access to Medical Treatment Act".

 

 

This page is under construction. If you would like to know more about this topic, please call 770-232-7883 or contact us by This email address is being protected from spambots. You need JavaScript enabled to view it..

 

STEP ONE

Be informed.  Read information below.

STEP TWO

Schedule consultation with R. Douglas Wichman, MD.

STEP THREE

Submit "New Patient Form", current labwork, & imaging results prior to consultation.

STEP FOUR

Establish if you are a candidate for this therapy

in accordance with the Georgia

"Access to Medical Treatment Act".

 

 

Image result for 3-bromopyruvate

 

Image result for 3-bromopyruvate

 

----------------------------------------------------------------------------------------------------------------------------------------------------------

*** SPECIAL NOTE FROM DR. WICHMAN ***

The following excellent article was reproduced from the Chinese Journal of Cancer at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110469/:

 

Chin J Cancer. 2014 Jul; 33(7): 356–364.
PMCID: PMC4110469

Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study

 

Metastatic melanoma, the most deadly skin cancer, is resistant to current treatment modalities. Melanoma energy supply is derived from glucose oxidation (glycolysis) in the tumor center and oxidative phosphorylation in the tumor periphery[1],[2]. However, inhibiting glycolysis is sufficient to limit energy delivered to melanoma through both pathways, as glucose oxidation produces enormous amounts of lactate per the Warburg effect[3]. The resultant lactate is used to fuel oxidative phosphorylation in the tumor periphery in a phenomenon called metabolic symbiosis[1],[2] (Figure 1A). Melanoma cells exhibit the Warburg effect, as they use more glucose and produce more lactate than normal melanocytes[4]. Lactate induces acidosis of the cancer cell microenvironment and creates a toxic microenvironment for surrounding normal and susceptible cancer cells. On the other hand, cancer cells that can survive this unfavorable microenvironment thrive[5], facilitating progressive malignancy and metastasis (Figure 1A).

Figure 1.
Glycolysis and metabolic symbiosis in cancer and melanoma metastasis.

Interestingly, lactate mediates inflammatory reactions[6], enhances angiogenesis[7], and is associated with decreased patient survival, chemoresistance, radioresistance, and decreased immunity against cancer[8] (Figure 1A). “Lactate is the mirror and motor of malignancy”[9], facilitating cancer cell survival, progression, and distant metastasis[8]. Lactate formation is the last step in glycolysis in cancer cells and is catalyzed by lactate dehydrogenase (LDH). LDH has been reported as the most significant marker for melanoma progression and is included in the American Joint Committee on Cancer (AJCC) melanoma staging system: patients with high LDH are diagnosed with stage IV M1c melanoma[10]. Serum LDH level was reported to be highly predictive of melanoma treatment in randomized clinical trials[11].

3-Bromopyruvate (3BP) is a pyruvate and lactate analog (Figure 1B) that has shown antitumor activity against a number of cancers. 3BP was reported to induce necrotic cell death in sensitive melanoma cells[12]and to decrease the viability of glucocorticoid-resistant childhood acute lymphoblastic leukemia (ALL) cells[13]. Recently, 3BP was reported to treat aggressive neuroblastoma[14], as well as glioma and glioblastoma[15]. El Sayed et al.[15] reported that 3BP exerted potent anti-glioma effects by depleting glioma cell energy sources and inducing oxidative stress. There is only one published clinical study showing the effectiveness of 3BP as a potent anticancer agent, and in that study, it was used to treat human fibrolamellar hepatocellular carcinoma (HCC)[16]. 3BP was administered via transcatheter arterial chemoembolization and induced necrotic cell death in tumor tissue as evidenced by positron emission tomography-computed tomography (PET-CT)[16]. Indeed, 3BP was reported to eradicate HCC[17]. Selectivity of 3BP towards cancer tissue has been noted in several studies[15],[17],[18]. 3BP was also reported to be less toxic to normal cells both in vitro and in vivo[15],[17],[19].

3BP has several anticancer mechanisms. It is a powerful inhibitor of angiogenesis[20] and ATP-binding cassette transporters, which efflux chemotherapeutic drugs and cause chemoresistance[19]. Furthermore, 3BP inhibits key enzymes involved in glycolysis, including hexokinase II[17], glyceraldehyde-3-phosphate dehydrogenase[21], and LDH[22]. El Sayed et al.[23] reported that 3BP antagonized the effects of lactate and pyruvate. In addition, 3BP was reported to inhibit oxidative phosphorylation[16] and induce cancer cell death by generating hydrogen peroxide and causing oxidative stress[15]. Further research is needed to explore the potential of 3BP as an anticancer agent that exploits the Warburg effect and targets critical energy pathways in cancer cells. The information gained from such work may be useful for future development of 3BP as a therapeutic option for cancer patients.

Treatments based on better understanding of the biology of melanoma may be promising. We report a 28-year-old man with stage IV metastatic melanoma who received intravenous infusions of 3BP with limited effect. However, combining 3BP with an oral glutathione (GSH) inhibitor produced a better response. Combining 3BP with paracetamol may be necessary when the initial response to 3BP is not satisfactory. Here, we provide our experience with this case, concisely review the related literature, and discuss important future directions.

Case report

A 28-year-old man weighing 60 kg presented for the first time with a hard, painless mass in his left forearm in January 2012 and was admitted to Sohag Cancer Institute. A sample was collected from the mass for biopsy, and histopathology indicated melanoma (Figure 2A). The mass was surgically excised, and the patient was discharged 2 weeks after admission. Regular follow-up was done monthly.

Figure 2.
Melanoma metastatic to the lung and chest wall.

In July 2012, there was a local recurrence, where a progressively hard nodule was felt in the left forearm at the site of the excised mass (Figure 2B). The patient also presented with pain in the back and left chest wall. Chest X-ray and computed tomography (CT) scan revealed a progressively growing left pleural mass that caused destruction of a wide portion of the left lung, resulting in its collapse (Figures 2C–F) and shifting of the heart to the right side (dextrocardia). The patient was treated with bisphosphonates. Pain in the chest wall and back was intolerable, and the patient was treated with non-steroidal, anti-inflammatory drugs (ibuprofen and diclofenac), which were insufficient for pain management. As the mass at the left chest wall continued to grow, a hard metastatic mass (5 cm × 3 cm) bulged outside of the chest wall (Figure 2C). Local radiotherapy, which entailed a 25-Gy total dose administered in 5-Gy fractions 5 days per week using a linear accelerator, was applied to the bulging mass.

The patient sought medical advice at the Department of Medical Oncology and Nuclear Medicine in Sohag Faculty of Medicine at Sohag University (Egypt) and was admitted September 13, 2012. Immediately after admission, initial evaluation revealed that he had dyspnea, orthopnea, hypotension (BP, 90/60 mmHg), anorexia, generalized anasarca (mostly nutritional edema), rightward shift in cardiac apical beat (dextrocardia), bulging metastatic mass through the left chest wall, and painful regions over his left chest wall and back. Laboratory evaluation confirmed hypoalbuminemia, hypoproteinemia, and anemia, along with normal renal and liver functions. The patient's whole left lung was destroyed by lung metastasis, per CT scan (Figures 2C–F), with no air entry on the left side. Thus, the patient was maintained on oxygen by mask when necessary. Radiologic evaluation revealed collapsed left lung, pleural effusion on the left side, and metastatic mass on the left chest wall causing shift of the mediastinum to the right. Ultrasonography-guided aspiration failed to remove fluid, and little of the hemorrhagic effusion was aspirated. Intercostal tube was not used. The patient did not receive melanoma-related treatment but did receive supportive treatment in the form of salt-free human albumin infusion, diuretics, tonics, non-steroidal analgesics, hemostatic agents (e.g., capron), and one unit of fresh blood via transfusion.

The patient asked for treatment with new lines of chemotherapy for his current status and was accordingly informed about 3BP, including its mechanism of action and possible side effects. After receiving approval from the Ethics Committee of Sohag Faculty of Medicine and written consent from the patient according to the Declaration of Helsinki, treatment using 3BP was planned at safe, low therapeutic doses, based on previous reports and published studies of 3BP[15],[16],[18],[24],[25]. The therapeutic plan was devised to safely benefit the patient starting at lowest possible dose, which would be administered through intravenous drip infusion. This novel route for 3BP administration fractionates the calculated dose. This may be safer than direct intra-arterial injection of a bolus dose, which was reported to effectively, with minimal toxicity, treat liver tumors implanted in rabbits[25]. Further dose modification was considered in light of treatment safety and tolerability.

The patient's general condition was fair except for mild to moderate anasarca, which was partially relieved with salt-free albumin and diuretics. The patient also maintained a good urine output. With treatment, the patient had normal renal and liver functions with no orthopnea or dyspnea. Serum LDH level was tested before and during treatment with 3BP using Beckman Coulter AU analyzer through the automated clinical pathology laboratory in Sohag University Hospital (Egypt). Before treatment, serum LDH level was high, which reflects high glycolysis rate and energy metabolism in tumor and metastatic tissue[26]. Follow-up of serum LDH level indicated response to planned treatment with 3BP.

The first infusion of 3BP was administered on September 18, 2012. Based on the reference 3BP dosage range in humans (2–3.5 mg/kg body weight) reported recently by Ko et al.[16], the patient received 3BP at a dose of 1 mg/kg, added to 500 mL of glucose (5%), by slow-drip intravenous infusion over 2 h (Figure 3A). Treatment was tolerated, with no anaphylaxis or unexpected adverse events. Members of the treatment team attended beside the patient during 3BP infusion, and measures for emergency treatment were available. The only adverse event was a mild to moderate burning sensation at the infusion site, which decreased upon slowing the infusion rate. No phlebitis, local inflammatory reactions, or allergic reactions were encountered. At the end of infusion, the patient was in a good general condition, lying comfortably in bed and being able to sit, stand, and walk. He went to the toilet and his appetite improved.

Figure 3.
Treatment using 3BP (intravenous infusion).

The next day, results were promising, as LDH decreased moderately from 4,283 U/L to 3,126 U/L (Figure 3B). Both renal and liver functions were normal (Figure 4). No metabolic abnormalities were recorded with regard to arterial blood gases, serum glucose, or serum uric acid. Blood cellular count was within normal indices, with no evidence of hemolytic anemia (Figure 5). Bowel habits were normal after treatment using 3BP. Pain at the left chest wall and back was controlled with duragesic (fentanyl) trans-dermal skin patch.

Figure 4.
3BP is not toxic to liver or renal functions.
Figure 5.
3BP does not affect serum glucose level or hematologic parameters.

Four days later, serum LDH level started to rise again and reached 4,353 U/L. The patient received a second dose of 3BP—this time, 1 mg/kg added to 500 mL normal saline (0.9%) was admi-nistered via intravenous drip infusion over 3 h. Treatment was tolerated, and the patient had little burning sensation at the infusion site compared to the first time, as the infusion rate was lower. There was no phlebitis or anaphylaxis.

Over the next 10 days, the patient received 6 doses of 3BP (1.5-2.2 mg/kg added to 500 mL normal saline, given by intravenous drip infusion) (Figure 3A). All laboratory evaluations revealed normal liver and renal functions (Figure 4), with no hematologic impairments such as neutopenia or hemolytic anemia (Figure 5). The patient's general condition was stable on 3BP treatment. Serum LDH level was around half the initial level at presentation but did not fall to normal range (Figure 3B).

On October 5, 2012, the patient started treatment with paracetamol, a safe GSH depletor[27][32], in the form of oral, 500-mg tablets taken twice every 8 h for 3 consecutive days. By the next day, the patient received 3BP treatment (2.2 mg/kg added to 500 mL of normal saline, administered by slow-drip intravenous infusion over 3 h for 3 consecutive days), which was tolerated with no anaphylaxis or unexpected adverse events. Clinical follow-up revealed good response to treatment as evidenced by a decrease in pain with duragesic dermal patch and moderate improvement in appetite. Mild lower limb edema persisted and was controlled with diuretics. Renal and liver functions were within normal range. There was a sharp decrease in serum LDH level to 1,809 U/L (October 7), 58 U/L (October 8), and 12 U/L (October 9) (Figure 3B). The treatment was stopped, and the patient was in a fair condition apart from an intercurrent chest infection and mild to moderate lower limb edema.

The chest infection manifested with fever, cough, and respiratory distress (dyspnea). Chest examination revealed that there was no air entry on the left side of the chest due to the previously noted destruction of the lung. Complete blood count revealed moderate leukocytosis (Figure 5D) and neutrophilia, consistent with the infection. Bacterial pneumonia was considered in light of immunocompromise due to malignancy and borderline hypoproteinemia, and the patient received intravenous injection of appropriate broad-spectrum antibiotics. The patient's blood pressure was 90/60 mmHg, and renal and liver functions were normal (Figure 4). Hypoalbuminemia and hypoproteinemia were persistent, mostly due to anorexia and nutritional deficiency.

The patient still had pain in the back region and left chest wall at the metastatic points, and this was controlled with duragesic transdermal patch. Edema in both lower limbs was moderate under treatment with diuretics (with good urine output). The next day, fever, cough, respiratory distress, and decreased air entry on the right side was noted, and a further decrease in blood pressure occurred. Lower limb edema persisted and urine output decreased. Because of the fluid restriction, the patient received dopamine infusion at the intensive care unit, where blood pressure increased to 100/60 mmHg. Urine output increased, and fresh urine was voided in a urine collection bag. Liver and renal functions were normal. Echocardiographic evaluation revealed a metastatic mass in the wall of the left ventricle (2.5 cm × 2.5 cm) together with moderate pericardial effusion. The diagnosis was impending cardiac tamponade, which may have been secondary to metastasis that shifted the heart to the right, as well as nutritional hypoproteinemia. Overall cardiac movement was normal. Patient was maintained on treatment with antibiotics, dopamine, dobutamine, and diuretics in the intensive care unit. Edema in the lower limbs gradually decreased and blood pressure was stable at 100/60 mmHg.

Leukocytosis (Figure 5D) and absolute neutrophilia increased despite broad-spectrum antibiotics. Liver function tests, including serum alanine transaminase (ALT) (Figure 4A) was within the normal range with a slight elevation in serum aspartate transaminase (AST) (Figure 4B). In addition, serum bilirubin (Figure 4C) was within the normal range. Renal function tests such as serum creatinine (Figure 4G) were within the normal range, with a moderate elevation of serum urea (Figure 4H). The patient was in respiratory distress and hypoxemia was evident. The patient died because of hypoxemia on October 12, 2012.

Discussion

Serum LDH, a good parameter for the evaluation of tumors such as melanoma, is superior to the presence of a residual tumor mass for predicting treatment outcome. Targeting glycolysis and the Warburg effect with agents like 3BP deprives melanoma cells of the energy necessary for survival, proliferation, and metastasis.

Interestingly, serum LDH level reflects metabolic energy activity of cancer cells inside tumor mass, which may be a more sensitive indicator of tumor activity than tumor size. Early measurement of serum LDH level was reported to be useful in identifying response to chemotherapy. For example, in pediatric leukemia, higher LDH levels in ALL were associated with high counts of leukocytes and blast cells. In pediatric solid tumors, high LDH levels were associated with the extent of tumor mass and stage of the disease[33]. Moreover, LDH-A contributes to development of resistance of cancer cells to chemotherapy[34]. In melanoma, LDH is a metabolic marker to detect progression and predict prognosis in stage IV of the disease[35]. When discussing anticancer effects of 3BP, serum LDH level estimation as a response to treatment is critical, as 3BP is a structural analog of both lactate and pyruvate. Lactate produced through activity of LDH fuels aerobic populations inside tumors via metabolic symbiosis (Figure 1A)[1].

Combining 3BP with lactate or pyruvate, substrates of LDH, protected cancer cell viability, suggesting that 3BP is an antagonist to lactate and pyruvate. 3BP was reported to compete with pyruvate for LDH[36]. Furthermore, it may be transported to the inside of cancer cells through the pyruvate-lactate transporter (monocarboxylate transporters). Up-regulation of these transporters results in enhanced 3BP uptake in tumor cells[37]. Thus, 3BP inhibits LDH by competing with its substrates[22].

Paracetamol (acetaminophen, N-acetyl para-amino phenol) is widely used in pediatric practice and adults. Paracetamol is a GSH depletor and is safer than acetyl salicylic acid (aspirin, Aspegic) as an antipyretic because Aspegic may induce Rey's syndrome[27]. Paracetamol is tolerated at high doses[28]. Indeed, there was no increase in hepatic toxicity in alcoholic patients who were given the maximum therapeutic dose of paracetamol (4 g/day)[29]. Lack of maximum decrease in serum LDH level with 3BP might be due to high cellular GSH content, i.e., high tumor content of GSH may inhibit 3BP-induced anticancer effects. When the GSH depletor paracetamol was used with 3BP, LDH dramatically decreased. Notably, this decrease was not due to 3BP-mediated inhibition of serum LDH as evidenced by the lack of a maximum decrease in serum LDH level with 3BP alone. Maximum LDH decrease upon combined treatment confirmed that tumoral GSH was antagonistic to 3BP-induced melanoma cell death. That might indicate a shut down in glycolysis in melanoma cells and signal metabolic cure of metastatic melanoma. Similarly, Qin et al.[12] reported that some melanoma cells were resistant to 3BP due to their high cellular content of GSH, an antioxidant and inhibitor of 3BP. Depletion of GSH in melanoma using L-Buthionine sulfoximine (BSO), a selective inhibitor of GSH biosynthesis, sensitized resistant melanoma cells to 3BP and induced necrotic cell death. Thus, when initial response to 3BP treatment is weak, it may be advisable to combine a GSH depletor with 3BP.

BSO is another GSH depletor that was studied in vitro but has not been studied in humans; paracetamol is safer than BSO for human use. Interestingly, paracetamol inhibited growth and decreased tumor size in experimental models[30]. Melanoma cells using tyrosinase enzyme used paracetamol as a substrate for tyrosinase. In addition, paracetamol killed melanoma cells by depleting GSH, increasing reactive oxygen species levels, and inducing mitochondrial toxicity[31]. Paracetamol was also recently reported to increase LDH activity[38].Combination of paracetamol with 3BP seems promising, as 3BP targets cancer cells at many points. We recently reported that 3BP targets the energetic arm, metastatic arm (hyaluronan synthesis through uronic acid pathway), and the mitotic arm of malignancy (DNA synthesis) in addition to targeting phosphohexose isomerase, an autocrine motility factor[39]. In the case reported here, unformulated 3BP (Sigma, USA) was administered through slow intravenous infusion to minimize any possible adverse events. This approach was tolerable with minimal toxicity. The patient's condition was stable under supportive treatment. 3BP and paracetamol were given when the patient's condition and laboratory investigations were stable. Close medical supervision was offered at all times and no treatment (except supportive treatment) was given when acute conditions were present. Normal renal functions, liver functions, and hematologic indices during treatment may indicate that 3BP is a safe anticancer agent. The moderate elevation in serum urea might be due to the antibiotics given for severe chest infection, infection state, or 3BP.

Conclusions

3BP can be regarded as an antimetabolite, being a structural analog of pyruvate and lactate, that can be administered by slow intravenous infusion with minimal hepatic, renal, and hematologic toxicity. Anticancer efficacy of 3BP can be antagonized by high tumor GSH content but can be potentiated on concurrent administration of GSH depletors such as paracetamol. Future clinical trials using 3BP as an anti-melanoma agent and as a general anticancer agent are strongly recommended. When the anticancer effect of 3BP needs to be potentiated, combination with paracetamol may be considered.


Articles from Chinese Journal of Cancer are provided here courtesy of BioMed Central

 

----------------------------------------------------------------------------------------------------------------------------------------------------------

 

Research conducted by Johns Hopkins School of Medicine shows evidence that 3-Bromopyruvate (3BP) stops the growth of liver cancer while leaving normal cells unharmed. Known as the Warburg effect, cancer cells produce a high level of energy through glycolysis, the metabolism of glucose, which causes lactic acid fermentation in the cell. The Warburg effect stipulates this abnormal metabolic process may be the cause of cancer.

Treating the cancer cell with a 3BP inhibits glycolysis by lowering levels of intracellular energy exchange resulting in cancer cell death. Further research is underway to discover how 3BP can treat other types of cancers.

Sources and Research:

3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: introduction to a special issue.

Therapeutics for cancer using 3-bromopyruvate and other selective inhibitors of ATP production

Why Anti-Energetic Agents Such as Citrate or 3-Bromopyruvate Should be Tested as Anti-Cancer Agents:

Experimental In Vitro and In Vivo Studies

3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy

 

STEP ONE

Be informed.  Read information below.

STEP TWO

Schedule consultation with R. Douglas Wichman, MD.

STEP THREE

Submit "New Patient Form", current labwork, & imaging results prior to consultation.

STEP FOUR

Establish if you are a candidate for this therapy

in accordance with the Georgia

"Access to Medical Treatment Act".

 

 

Dichloroacetate (DCA) is a synthetic drug which is has been shown to kill cancer cells by taking advantage of cancer’s particular metabolic process and uses it against it.

Like normal cells, tumor cells need to convert sugar to energy to survive. One method, Glucose oxidation is compromised by the tumor, and the cell then relies on Glycolysis, which allows the cancer to grow without oxygen. This results in abnormal production of the enzyme pyruvate dehydrogenase kinase (PDK), which suppresses pyruvate, a necessary organic acid in glucose oxidation. DCA suppresses PDK, activating the cells mitochondria which activates the cell’s “kill switch”, causing the tumor cell to die.

Sources and Research

Metabolic Modulation of Glioblastoma with Dichloroacetate

Hyperbaric Oxygen Therapy

 

Hyperbaric Oxygen Therapy (HBOT) helps all kinds of people. It’s used to help patients suffering from sports injuries, Chronic Fatigue Syndrome, infections, arthritis and a huge range of other medical conditions. As we all know, oxygen is vital for life, and life cannot exist without it. It follows that oxygen is essential for effective healing and recovery.

read more

Book Your Appointment NOW

Call (770) 232-7883

 

Click to E-Mail Us Now!

 

Our Address:

4488 N. Shallowford Road, Suite 201

Dunwoody, Georgia 30338

 

We Serve the Following Areas:

Atlanta, Georgia, Acworth, Alpharetta, Berkeley Lake, Braselton, Brookhaven, Buckhead, Buford, Canton, Chamblee, Conyers, Cumming, Dacula, Decatur, Doraville, Duluth, Dunwoody, Georgia, Flowery Branch, Gainesville, Grayson, Hoschton, Johns Creek, Kennesaw, Lawrenceville, Lilburn, Lithonia, Loganville, Marietta, Milton, Norcross, Roswell, Sandy Springs, Smyrna, Snellville, Stone Mountain, Sugar Hill, Suwanee, Tucker, Vinings, Woodstock, Georgia